APPLICATION OF A DIFFERENTIAL-DIFFERENCE METHOD
TO THE SOLUTION OF ONE-DIMENSIONAL NONSTATIONARY
HEAT CONDUCTION PROBLEMS WITH A MOVING BOUNDARY

L. Ya., Zhemoidina UDC 536,2,01

A differential-difference method is applied to obtain an approximate solution of one~dimen-
sional nonstationary heat conduction problems with a moving boundary in rectangular and
cylindrical systems of coordinates. Recursion formulas are obtained for the determination
of successive values of the unknown functions,

Heat conduction problems with moving boundaries arise in processes in which the heat transfer is
accompanied by a phase transformation in the conducting medium [1].

By way of example we cite the problems of melting and solidification of solids, the essential feature
of which is the presence of a boundary separating phases of differing thermophysical properties, the bound-
ary being displaced in time.

In a number of cases, for example, in the case of arcing spots in point~intensity arcs, critical sec-
tions of which are jets, etc., the thermal flows involved are so large that the material at the surface melts,
is vaporized, and is carried away by the external flow. This problem is one of single phase, We consider
several problems of this type.

Initially we consider the problem for the halfspace (0 < x < «) under the assumption that its tem~
perature stays the same at all points of each plane x = const, i.e., that it satisfies the one~dimensional heat
conduction equation, Let us assume that a constant thermal flux q is present at the surface of the haifspace,
and that initially the temperature throughout the halfspace is constant and taken to be equal to zero, The
solution of the problem with a variable thermal flux, which depends on the time, may be obtained from the
corresponding solutions for a constant thermal flux with the aid of Duhamel's theorem or by an application
of the theorem involving the product of transforms [2],

The problem we have indicated here can, up to the onset of motion of the boundary, be formulated
mathematically as follows: find the temperature distribution in the halfspace from the equation
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in the domain IT: {0 < x < =, 0 < t < tM}, with the additional conditions
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The problem (1)-(2) is the usual problem of heat conduction with a fixed boundary, solvable with the
aid of the Laplace transform. As is well known [2], this solution has the form
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We find the time, defining the start of the phase transition, and, consequently, the onset of motion
of the boundary., Denoting the melting temperature by up;, and the time needed to attain this temperature
by ty, we find from Eq, (3) for x =0,
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The temperature distribution at this time is as follows:
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We commence our calculations at the instant of melting, The problem may be formulated then as fol-
lows: determine the temperature of the halfspace, u(x, t), and the position of its melting front, x = £ (t),
from the equation
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in the domain D: {£(t) < x < », 0 < t < T}, with the following initial and boundary conditions:
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On the phase transition surface the following condition holds:
xpiﬂ:q_i_k_a_”(iﬁ_ , O<t<T. ®)
dt 0x x=E(t)

We assume that the unknown function u(x, t) is defined and continuous in the domain D*: {£ (t) = x < e,
0 <t = T}, that the derivatives 8%/ 8x* and du /8t are continuous and bounded in the interior of this do-
main, and that £(t) is a continuous monotonically increasing positive twice-differentiable function for all
0 =t=T, where ¢£(0) =0,

To solve this problem we apply a differential-difference method, i.e., a method involving time steps,
an index denoting the number of the step,

In Eq. (5) we put t = ty, .4 and we replace the derivative with respect to t by the finite-difference ratio
ou (x, i) ~ ulx, ty. ) —ulx, t,) ©)
ot —t h ’
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where h =ty 4=ty denotes the time step,

Substituting the expression (9) into Eq. (5) and replacing the approximate equation by an exact one,
we obtain asystem of ordinary differential equations

2 <
—d—u(';ci;—(& —at,,, (X)) =—a%,(x) (m=0,1,2..). (10)
Here @’ = cp/kh and the up, . {(X) must approximate u(x, tm +). The initial and boundary conditions may be
represented in the form

U, ==t X)) =0), 0<x<oo, ¢(0)=uy, a1

Uppg () =t (1,0, ) = s Mg () o =0 (m=0, 1, 2, ...).

Similarly, if we replace the time~derivative d¢ (t)/dt by the difference-ratio in Eq. (8), we obtain the follow-
ing equations for determining the quantities £, 14, which approximate the values £ (ty +4):
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The solution of Eq. (10), obtained by the method of variation of parameters with the conditions (11) taken
into account, and the fact that um + [ £ty + 91 = um +{ém +1), Mmay be represented in the form

o«
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Enty )

/—afum(xi)sha(xi——x) de, (m=0,1, 2 ..). (13)

Expression (13) is a recursion relation for determining the successive values of um +(x),

Moreover convergence of the integrals is ensured by the behavior of the integrand function and Eq.
(12) may be transformed as follows:
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We determine over each time step h the amount of displacement of the moving boundary.
We put
Em-{-i - gm = 6m-«-i-
Then
Emit = Em t+ 6m+1' (15)

Expression (15) serves as a recursion formula for finding successive values of £y, ;4.

Let

F (G = § (o) expl—ay,— &, )l dx,
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then from Eq. (14) we obtain
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To find 8y +1 we expand the function ¥ (£, + 6y +1) by Taylor's formula
F (Em + 6m+1) =F (Em) + 6m+1FI (Em) + 0 (6?,14.1)>

Taking note of terms of order 6%,1 +1 and the equality F'(¢m) = aF (&) —uyp, we obtain from Eq. (16)
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The values of 6y +1, found from formula (17), permit us to successively determine £y +4 for m =0, 1, 2,
«..s8ince £, = 0 is known.

A problem, similar to the preceding, for the case of a layer of finite thickness (0 = x =), where in
the melting process the temperature on its lower surface (x = 0) is a function of the time, f(t), and where
upg = 0, yields the following solutions:
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4,005 // Fig. 1. Curve showing the de-
/ pendence of the thickness of the

0004 / melted portion of the wall (in

Q002 meters) on the time (in secs).

TABLE 1
m ‘ 0 l 1 2
Bt 0,223 0,279 0,321
- 0,223 0,502 0,823
i f E”Hr v
) = — | AmtL U, (x,) shaxdx
(&) shag,,,( et | e sha )
0

and tm +1= Em~O6m+1form=0,1,2,..., where £g=1.

If we also consider the problems for the cases of continuous and hollow cylinders, also for zero melt-
ing temperature, we obtain the solutions:

a) for the continuous cylinder
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b) for the hollow cylinder
~ - Minte
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In both cases Ny +1= Nm — Om +1» Mo = R, and Iy(ar), Ky(ar) are Bessel functions of zero order of the first
and second kind of an imaginary argument [4],
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k(r, r) =1, (ar) Ks(ar) — I, (ar) Ky (ary).

By way of example we give below the results of the calculations for the first few instants in the in~-
stantaneous melting of a steel wall, The thermophysical parameters of steel are as follows: ¢ = 5. 102J
/kg-deg, p =17.8-10° kg/m?, A =1,38-10° J/kg; upp = 1803°K; k = 46 gT/m-deg. The calculations were
made with a constant heat flux q = 2,09+ 107 3T /m? In addition, h =1 sec, a = 2.92°102 1/m, The melt-
ing curve of ¢, 44 is shown in the figure.

An estimate of the error was obtained using Rothe's method [5~7]. The errors made were shown to be
of order O().

NOTATION
u(x, t),
u(r, ty are the temperature;
£(t) is the function determining the position of moving boundary;
7 (t) is the variable radius of cylinder;
c is the specific heat;
I is the density;
k is the thermal conductivity;
" is the thermal diffusivity;
A is the latent heat of fusion;
T is the time of process duration under consideration.
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